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It is known that when two different species of small particles with radii in the range 
10-100 pm are dispersed uniformly in fluid and are settling under gravity, there may 
be a tendency for the particles of each species to gather together and develop a bulk 
vertical streaming motion, which results in much larger magnitudes of the mean 
velocity of at  least one of the two types of particle. After a review of the published 
data on such streaming motions we describe new visual and photographic observations 
of the evolution of the internal structures (which are sometimes more globular than 
columnar) in a large number of different bidisperse systems. It appears that the 
observed structures result from instability of the statistically homogeneous dispersion 
to small concentration disturbances for certain combinations of values of the ratios 
of the sizes and densities of the two types of particle and the volume fractions of the 
two species. 

The condition for growth of a sinusoidal disturbance of the homogeneous dispersion 
is derived from the two particle-conservation equations and is found to involve the 
dependence of the two mean particle velocities on the two particle concentrations in 
a homogeneous dispersion. Previously calculated values of these mean velocities for 
a dilute dispersion suggest that the condition for instability is indeed satisfied for 
not-too-small particle concentrations and certain combinations of the size and 
density ratios of the two particle species. The results of the instability theory are 
generally consistent with the observed features of the structures, regarded as 
finite-amplitude forms of the small disturbances with maximum growth rate. 

1. Introduction 
It was noticed by Whitmore (1955) that the effect of adding neutrally buoyant 

particles to a monodisperse system of small sedimenting spherical particles is to 
increase the settling speed of the heavy particles when the total volume fraction of 
the particles exceeds about 0.15, and that this increase in the settling speed is a 
consequence of the heavy particles gathering together in vertical columns and falling 
as a whole without being impeded by the neutrally buoyant particles. This appears 
to have been the first observation of the formation of internal structures in bidisperse 
sedimentation. The phenomenon was not investigated further until the work of 
Weiland and his co-workers (Weiland & McPherson 1979; Fessas & Weiland, 1981, 
1982, 1984; Weiland, Fessas & Ramarao 1984), who found that streaming columns 
are formed over a wide range of properties of the two particle species. These authors 
point out the potential value to chemical engineers of a means of increasing particle 
settling speeds. 

The formation of internal structures in an initially statistically homogeneous 
bidisperse system of sedimenting particles implies a rather remarkable spontaneous 
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local clustering and separation of the two particle species. Most of the previous papers 
have been concerned with the resulting increases in the mean velocities of one or 
both of the particle species, and the possible exploitation of these greater settling rates 
in practice. Our purpose however is to investigate the phenomenon of structure 
formation and to try to  understand its origin. We have made new visual observations 
of structure formation with two general purposes, viz. (i) to illuminate the early stages 
of the process, and (ii) to  explore the bounds on the values of the governing 
parameters for which internal structures form. We shall also present a theory of the 
instability of an initial well-mixed state in which a growing disturbance is simply a 
bidisperse form of the kind of concentration wave in a monodispersion first analysed 
by Kynch (1952). The condition for instability involves only the mean velocities of 
the two species of particle as functions of the concentrations of the two species 
in a homogeneous dispersion, about which a little information is available. The 
comparison between our observations and our theory that we shall make in $ 7  
encourages the belief that  the observed internal structures are a finite-amplitude form 
of these growing small disturbances. 

2. Previous observations of streaming columns 
The conditions under which streaming columns form have not previously been 

investigated directly, but some of the relevant facts can be inferred from the 
observations reported in the literature. We have listed in table 1 the properties of 
the particle pairs for which the existence of streamlining columns has been reported. 
(Fessas & Weiland 1984 say they have observed streaming columns with some other 
particle pairs but do not give the details needed for inclusion in table 1).  It appears 
from the work of Weiland et al. (1984) that  streaming columns may form when the 
velocities of isolated particles of the two species have either the same or different 
senses, although visual observations by these and other authors indicate that the 
streaming columns are more clearly defined for larger magnitudes of the relative 
velocity of isolated particles of the two species. 

We give in the table the values of the Reynolds number of the flow about an isolated 
particle of one of the two species. The Reynolds numbers are all smaller than unity, 
much smaller in some cases, which indicates that  inertia of the fluid has no effect on 
the properties of these statistically homogeneous dispersions ; and since the particle 
densities are all comparable with that of the continuous fluid phase, particle inertia 
is likewise excluded. Furthermore, the values of the PBclet number, defmed as 
a, CT,,/D, (where D, = kT/6npa1 is the Brownian diffusivity of an isolated spherical 
particle of radius a l ) ,  all exceed lo’, showing that Brownian motion of the particles 
plays no part in the formation of internal structures. 

It appears that  a necessary condition for the formation of streaming columns is 
that the total volume fraction of the two types of particle should not be small. This 
is suggested by the observations of the steady-state settling speed of one type of 
particle as a function of the volume fractions of the two types made by Whitmore 
(1955) and Fessas & Weiland (1981,1984) for the systems indicated under their names 
in table 1.  At small total volume fraction each particle species apparently hinders 
the settling of the other in the general way that is expected when the dispersion is 
statistically homogeneous (and for which accurate numerical results have recently 
been calculated by Batchelor & Wen 1982). But as the total particle volume fraction 
is increased above about 0.15 the mean speed of each particle species begins to  rise, 
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O I  
0.1 0.3 +* 0.2 

FIGURE 1 .  The dependence of the mean fall speed of (heavy) particles on the concentration of a 
second species of (buoyant) particles, as observed by Fessas & Weiland (1981). 

and may attain a value many times larger than that in the complete absence of the 
other species before beginning to fall again when the total particle volume fraction 
reaches about 0.40. Figure 1 taken from Fessas & Weiland (1981) shows some of the 
measurements of mean particle speeds made by these authors. 

The form of the internal structures that appear spontaneously in a homogeneous 
bidispersion of sedimenting particles is difficult to observe and is less well documented 
than the resulting changes in mean velocity of each species. Weiland and co-workers 
refer to ‘lateral separation’ of the two species and to the formation of vertical fingers 
or columns in which one of the two species is concentrated and which develop a 
vertical gravity-driven bulk motion. Fessas & Weiland (1984) describe the observed 
internal structures as vertical streaming columns ‘3.5 mm in diameter containing the 
less populous species’ which ‘form and flow through a concentrated continuum 
suspension of the more populous species’. Weiland et al. (1984) also report that there 
is a preferred width of the streaming columns at any instant, and that there appears 
to be a gradual decrease of this characteristic width yielding columns ‘of increasingly 
h e r  scale ’. The only published photographs of bidisperse sedimenting particles which 
reveal the distribution of the separate species are those taken by Weiland et al. (1984). 
They show one photograph for each of the systems B and C listed under their names 
in table 1, and a sequence of small photographs of their system A a t  10 s intervals. 

Many questions concerning the origin of internal structures remain open. There is 
in particular a lack of information about their growth and form in the early stage 
prior to the development of bulk vertical motions due to appreciable spatial 
variations of particle concentration. Nor is there any information about critical 
conditions for the formation of structures. The authors mentioned above report the 
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Particle species 
I 
I1 
I11 
IV 
V 
VI 
VII 
VIII 
IX 
X 
XI 
XI1 

Radius (mm) 
0.24 f 0.02 
0.24k0.02 
0.16+0.02 
0.16 f0.02 
0.41 f0.04 
0.40+0.04 
0.24f0.02 
0.37 f0.03 
0.16 f 0.01 
0.31 k0.02 
0.24k0.02 
0.41 f0.04 

Density (gm/cms) 
1.175 fO.OO1 
1.049 f 0.001 
1.175 f 0.001 
1.051 f0.001 
1.047 0.001 
1.043 fO.001 
1.039 f 0.001 
1.0395 f 0.0005 
1.0440 f 0.0005 
1.0395 k 0.0005 
1.0450 f 0.0005 
1.0475 f O.OoO5 

Material 
Acrylic 

Polystyrene 
Acrylic 

Polystyrene 
Polystyrene 
Polystyrene 
Polystyrene 
Polystyrene 
Polystyrene 
Polystyrene 
Polystyrene 
Polystyrene 

TABLE 2. Physical properties of the particles used in the experiments. 

existence of structures and bulk convective motions in every bidisperse system they 
studied except ones for which either of the two particle volume fractions is very small, 
but i t  seems intrinsically likely that there are other conditions for their existence.? 

3. New observations of the formation of structures 
A primary purpose of our observations was to determine the conditions under which 

structures form spontaneously in the interior of a homogeneous bidispersion of 
sedimenting spherical particles. Each bidisperse system requires the values of four 
parameters for its specification, namely the ratios of the radii and of the (reduced) 
densities of the two species, 

A = -  a2 y=- P2 -Po 
a1 P1-Po’ 

and the volume fractions of the two species in the homogeneous dispersion, and 
q52. In order to get some idea of the systematic dependence of the behaviour of a system 
on these parameters we made most of our observations on two sets of systems, in 
each of which two of the parameters were kept constant. For the systems in the first 
set h x 1, y x - 1, and the concentrations q51 and q52 were varied; and for those in 
the second set q51 = q52 = 0.15, and the particle properties h and y were varied. 

The particles used were polystyrene and acrylic spheres of various sizes and 
densities (some dyed), and their properties are listed in table 2. Each species in the 
table, labelled by a Roman numeral, was obtained by sieving particles into the size 
range quoted and then separating them into the stated density range by alternately 
sinking and floating in liquids of known density (at a constant temperature of 19.5 “C). 

t Whitmore (1955) even says that ‘vertical currents’ are ‘present to a small extent’ in a 
monodispersion (of his type 1 spheres described in table l), although neither we nor Weiland & 
McPherson (1979) find evidence of sustained bulk vertical motions when particles of uniform radius 
in the range 10-100 pm are dispersed in liquid. It is of course to be expected that in any dispersion 
there will be fluctuations in the number of particles instantaneously lying within a region of specified 
volume and that when this fluctuation is large there will be bulk convection and instantaneously 
an above-average vertical speed of all the particles in this region. Such collective motions are 
transient, but are not easily distinguished from a weak systematic development of structures of 
the kind observed in some bidispersions. 
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System A B C 

I 
I1 

1.112 
4.70 
1.61 
0.09 
1 .o 

.1.0 - 

IV 
I11 

1.113 
4.95 
0.70 
0.03 
1 .o 

.1.0 - 

VI 
V 

1.045 
1.70 
0.41 
0.11 
1.03 

-1.0 

TABLE 3. The three systems for which h x 1, y x - 1. 

The suspending liquid was an aqueous glycerol solution to which a few drops of liquid 
detergent had been added to prevent the particles from sticking together. With one 
exception (system B in table 3)’ the dispersions we observed were all contained in a 
rectangular clear Perspex cell 20 cm tall, 10 cm wide and with a gap width of 5 mm 
between the parallel plates. The cell used in B was 37.5 cm tall, 5 cm wide with a 
gap of 3 mm. 

A small quantity of lead shot (2 mm in diameter) was added to the contents of the 
cell to facilitate mixing, and as much as possible of the trapped air was removed before 
it was sealed. Mixing required some dexterity in practice and was done by first holding 
the cell vertical and rapidly rotating it in its own plane about its centre to dislodge 
the sedimented beds and then inverting i t  many times using the shot to homogenize 
the mixture. In  the final stages it was also shaken from side to side during the 
downward passage of the shot to prevent any possible vertical structure remaining 
in their wake. All the while the contents were kept under scrutiny by back-lighting 
the cell. When it was judged by eye to be uniformly mixed, the cell was quickly placed 
in a photographic rig and photographed under back-lighting. 

The random nature of the emerging structures makes it extremely difficult to obtain 
reliable quantitative information. The results that follow are based on impressions 
gained by comparing photographic sequences as well as from direct visual 
observation. 

Systems for which A x 1, y x - 1 

In these systems the particles are equally and oppositely buoyant with respect to the 
suspending fluid, the symmetry being broken only if the volume fractions of the two 
particle species are different. The end state of these systems consists of packed beds 
at the upper and lower boundaries of the cell which contain exclusively one kind of 
particle or the other and whose depths are proportional to the initial volume fractions 
of their respective particles. 

Table 3 lists the physical parameters of the three systems (designated as A, B and 
C) with pairs of particle species for which A x 1 ,  y x - 1 .  Table 4 gives the volume 
fractions in the systems observed and summarizes the impressions gained of their 
behaviour. The entries in the column headed ‘stability ’ indicate that the particular 
system was judged to be stable (designated ‘S ’), unstable ( ‘U’)  or, being undecidable, 
marginal ( ‘ M ’ ) . 

All those systems classed as unstable acquired a ‘grainy’ appearance within a few 
seconds of the cessation of mixing, the intensity being stronger in some cases than 
in others. As illustrated in figure 2(a)  (system A l l  at 2 s), these ‘grains’ are small 
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System 

A 1  
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

B 1  
2 

c 1  
2 

$1 

0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.26 
0.25 
0.25 
0.25 
0.20 
0.20 
0.20 
0.20 
0.16 
0.16 
0.16 
0.13 
0.12 
0.12 
0.13 
0.12 
0.12 
0.12 
0.1 1 
0.10 
0.08 
0.07 

0.15 
0.25 

0.15 
0.21 

$1 

0.14 
0.08 
0.04 
0.025 
0.016 

< 0.01 
0.19 
0.15 
0.07 
0.02 
0.20 
0.14 
0.09 
0.03 
0.16 
0.10 
0.06 
0.12 
0.12 
0.12 
0.07 
0.06 
0.03 
0.025 
0.11 
0.10 
0.08 
0.07 

0.15 
0.08 

0.15 
0.15 

Stability 

U 
U 
U 
M 
S 
S 
U 
U 
U 
S 
U 
U 
U 
S 
U 
U 
M 
U 
U 
U 
M 
M 
S 
S 
U 
U 
M 
S 

U 
U 
U 
U 

Type 
B 
B 
B 
- 
- 

- 

B 
B 
BC 

BC 
CB 
CB 

C 
C 
C 
C 
C 
C 
C 
C 

- 

- 

- 
- 
C 
C 
C 

CB 
CB 

BC 
B 

- 

Contrast 

G 
G- 
F 
- 
- 
- 
G+ 
G 
F- 

G 
F 
P+ 

P+ 
P+ 

P- 
P+ 
P 

- 

- 

- 

- 
- 
- 
- 
P- 
P- 
- 
- 

F 
F 

G- 
G+ 

dla,  
67 
33 
21 
- 
- 
- 
63 
54 
29 

54 
46 
29 

31 
25 

25 
25 
25 

- 

- 

- 

- 
- 
- 
- 
21 
21 
- 
- 

31 
31 

50 
50 

7 I UlO I/% 
60 
47 
40 
- 
- 
- 
74 
74 
60 

60 
47 
34 

34 
34 

2 
34 
20 

- 

- 

- 

- 
- 
- 
- 
20 
20 
- 
- 

39 
48 

> 62 
> 62 

TABLE 4. The observed features of the structures formed in systems for which A x 1, y x - 1. 

irregular regions, several particle radii across, in which there appears to be more of 
one particle species than the other, but whose boundaries proved to be impossible 
to locate with any certainty, especially in the weakly unstable systems. They were 
randomly and homogeneously distributed over the cell when it was well mixed. 

Initially only individual particle motions could be seen. But as the excess number 
of particles of one species in some small region increases, so does the effective 
buoyancy of this region, and eventually convective motion is generated by the excess 
buoyancy and groups of particles move as a whole. Figures 2 (a)-(e) show photographs 
at stages in the development of system A1 1 up to the time when fairly large structures 
have formed, and figure 2 (c )  (at 8 s) illustrates the beginning of the period during 
which convective motion spreads throughout the cell. 

The convective structures which evolved in the various systems are designated in 
table 4 as being of one of the following types: 

Type B : ' Blobs ', distinct self-contained buoyant or heavy regions rising or falling 
coherently as drops with only minor skirts or tails and generally containing only the 
species that was in the minority in systems in which and q52 are large and unequal. 



386 
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FIQURE 2. System A l l ,  with structures classified as blobs with tails and good contrast. The 
horizontal width of the portion of the cell in the photographs is 10 cm. (a) At 2 s ,  ( b )  4 s, (c) 8 s, 
(d)  16 s, and (e) 24 s. 
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387 

3 

5 

FIQURE 2(e). For caption see facing page. 
FIQURE 3. System A1 at 22 s, with structures classified as blobs with good contrast. 
FIQURE 4. System A15 at 20 s,  with structures classified as streaming columns with head formation 
and fair contrast. 
FIQURE 5. System A16 at 20 s, with structures classified as streaming columns with poor contrast. 
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An example is shown in figure 3 (system A1 at 22 9). These objects grow by coalescence 
to fairly large sizes and did not appear to have completed their evolution before 
merging with the packed beds at  the ends of the cell. 

Type BC: Similar to the above but with more pronounced tails or skirts, illustrated 
in figure 2(e )  (system A l l  at 24 s). These occur in systems in which the two volume 
fractions are large and nearly equal. 

Type CB : Streaming columns, i.e. coherent vertically flowing regions, which showed 
a tendency to form heads, illustrated in figure 4 (system A15 at 20 s). 

Type C : Streaming columns, often meandering irregularly, with no noticeable head 
formatios, as in figure 5 (system A16 at 20 s). 

In every case the stronger and more intense structures precipitated out first (at 
between 30-60 s) after which the activity in the cell declined as smaller and smaller 
features followed until only single particles remained, the process culminating in the 
separation of the two species (within 2 minutes). 

The type 1 particles in particle pair A defined in table 3 were virtually transparent 
acrylic (species I) while the type 2 were polystyrene dyed dark red (species 11). The 
designations P, F and G under the heading ‘contrast’ in table 4 give an indication 
of the photographic contrast between the principal features in the cell and therefore 
reveal something of the mixture of the two species in these features. G means good 
contrast and such strong separation that the structures are almost purely one species 
or the other (e.g. as in figure 3),  F stands for fair contrast (e.g. figure 4), and P for 
such poor contrast that visual distinction is difficult (e.g. figure 5). (That there are 
streams present in these latter cases is more evident to the naked eye which detects 
them by their motion.) It also appears from the photographic record that the same 
contrast classifications apply quite closely throughout each time sequence, which 
supports the notion that particle separation occurs essentially only in the initial phase 
and is not greatly affected by the subsequent convective motion. 

The time 7 at which convective motion was estimated by eye to have set in over 
most of the cell is given in non-dimensional form in the last column in table 4. Since 
bulk convection did not develop simultaneously in all parts of the cell, most probably 
due to imperfect mixing, there is an uncertainty in r of about f 15 %. 

The column in table 4 headed d /a ,  gives an estimate of the (non-dimensional) 
horizontal widths of the structures composed mainly of the dyed particles (type 2, 
almost always having the smaller volume fraction). This estimate was made for 
convenience at the same time in every case, viz. 20 s after the cessation of mixing 
(corresponding to a non-dimensional time 134), by which time the structures had 
developed into their characteristic types. In particular, the ‘blob ’ types had had 
sufficient time to grow by coalescence from smaller blobs, beginning with the grains 
produced by the instability. It was noticed that increasing qi2 at a given value of 

> $2), as in the sequences A3, A2, A1 and A9, A8, A7 and A13, A12, A l l  in 
table 4, gave rise to improved particle separation and blobs that grew increasingly 
rapidly by coalescence in the interval of time between the onset of convection (7) and 
the instant at  which their sizes were estimated. Furthermore, at the higher values 
of q52 at least, it appeared that the coalescence process could have continued and 
produced even larger blobs had the process not been limited by the size of the cell. 
On the other hand, convective motion developed sooner in systems producing 
columns than in those producing blobs, and partly for this reason it was difficult to 
discern the process by which the columns developed. However, at the time their sizes 
were estimated they appeared to have steady average horizontal widths. They 



Structure formation in bidisperse sedimentation 389 

0.2 

4z 

0.1 

0.3 
$1 

0 0.1 0.2 

FIGURE 6. The stability of systems for which A x 1 ,  y x - 1 as a function of and q52. x , system 
classified as unstable; m, marginally unstable; 0,  stable. v denotes a system observed by Fessas 
& Weiland (1981, 1984) to be marginally unstable in the sense that there was a small increase in 
the mean velocity of at least one species. 

exhibited a range of vertical lengths which proved impossible to quantify beyond the 
simple observation of being several times larger than their horizontal widths. 

The above observations of unstable systems allow the following generalizations : 
the higher the initial total volume fraction the more likely the system is to form blobs 
with good particle separation and the longer it takes for convective motion to become 
established ; and low-volume-fraction systems which are unstable tend to form 
streaming columns with poor particle separation and approximately constant 
horizontal dimensions. 

Finally, in those systems classified in table 4 as stable, no coherent convective 
structures arose and, although continuous small-scale cluster formation and breakup 
was observed in some cases, the definite ‘graininess’ of a fully unstable system did 
not occur. The stability characteristics of those systems classified as ‘marginal ’ were 
unclear ; they showed scattered and transient graininess, with poor contrast, but this 
did not lead to any definite flow structure although it may have raised the mean 
sedimentation velocities of the species concerned a little. 

All these results are summarized in figure 6. Note that the stability of a system 
for which h = 1, y = - 1 must be invariant under the exchange of and 4, so that 
only half a quadrant of the ($,,$,)-plane need be considered. The band shown in 
figure 6 contains all the systems that are marginal and defines reasonably well a 
stability boundary. 

It is possible at this point to make a rough comparison of the above observations 
of critical conditions with those made by Fessas & Weiland (1981, 1984) on systems 
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for which h NN 1,y x - 1 (viz. those described in the 3rd and 8th columns of table 1). 
Fessas & Weiland measured the mean velocities of the two types of particle, an 
example of their results being shown in figure 1, and did not otherwise observe the 
instability of the individual systems. However, since the increase in the magnitude 
of the mean sedimentation velocity of one species which results from the presence 
of the other species is presumably a consequence of the existence of convective 
structures in these systems, it is possible to infer something of their stability from 
these results. In particular, if the ratio of the mean sedimentation velocity of one of 
the species in the bidisperse system to the mean sedimentation velocity of the same 
species in a monodisperse system at the same volume fraction is greater than one, 
then the system is evidently unstable. We find that all the systems for which Fessas 
& Weiland report this ratio to exceed one lie in the part of figure 6 that corresponds 
to unstable systems. The solid triangles in figure 6 represent systems for which Fessas 
& Weiland fhd that the ratio is approximately unity (as indicated by curves like those 
shown in figure l) ,  and it is reassuring, in view of the difference between the two 
measures of instability, that all these points lie within our marginal-stability band. 

Systems for which = q5z = 0.15 
In these experiments both particle species were made of polystyrene, although with 
differing densities. A range of values of y was obtained by adjusting the density of 
the suspending fluid which again was an aqueous glycerol solution. I y I is restricted 
to lie between 0 and 1 by the convention that the species called type 1 (the reference 
species) was that whose density differed more from that of the fluid. The few systems 
for which y lies between - 1 and 0 were obtained by using a fluid whose density lay 
between those of the particles. 

When y is positive, as it is for most of these systems, both types of particles 
sediment in the same direction, a circumstance which makes the behaviour of these 
systems more subtle and produces in them a greater variety of end states than those 
for which y < 0. The single packed bed which forms at one end of the cell may be 
divided into two major zones. The zone further from the boundary consists 
exclusively of the particles whose free-fall speed is the smaller and its depth depends 
partly, at least in stable systems, on the relative fall speeds of the two particles. In  
contrast, the zone adjacent to the boundary exhibits a number of possible states, 
ranging from homogeneous mixtures of the two species in systems which are stable, 
to stratified layers resulting from the deposition of varying mixtures of particles at 
different stages in the development in time of an unstable system. Unfortunately the 
existence of this stratification is not always manifest, especially in weakly unstable 
systems, and this reduces its value as an indicator of the existence of the instability 
itself. The composition of the packed beds is one of many aspects of the convective 
structures which might have practical significance. 

= q5z = 0.15 and the 
observations made on them. The stability classifications have the same meaning as 
before but, owing to the wide range of opaque, tinted and dyed particles used, the 
contrast classification is much more subjective. 

Generally speaking, and ignoring considerations of the motions of the concentration 
fronts in the cell, the time development of the unstable systems for which y > 0 
follows the same pattern as that previously described for cases in which y = - 1.  That 
is, after the cessation of mixing a similar ‘graininess’ develops followed by the onset 
of bulk convection and its evolution into large-scale structures. From the experimental 
point of view, however, there are certain differences which make precise observations 

Table 5 lists the parameters of the systems for which 
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FIGURE 7 .  The stability of systems for which = q52 = 0.15 as a function of h and y. x , system 
classified as unstable; m, marginally unstable; 0, stable. 

even more elusive when y > 0. In  particular, the grains themselves were often 
noticeably in motion right from the start, and invariably very weakly formed, making 
the determination of the time of onset of convection virtually impossible in all but 
a few cases. Also, whereas in the y = - 1 systems the active zone in which convective 
structures exist vanishes a t  the time of separation of the two species, usually under 
2 min in the systems studied, here the active zone vanishes when the trailing 
concentration jump of the faster-moving particle reaches the packed bed, a t  a time 
which was found to  range from 45 s to  nearly an hour, averaging about 10 min. These 
factors necessitated some repetition and refinement in order to  determine whether 
a given system was stable or not. 

Figure 7 shows the observed stability as a function of A and y. We have drawn 
a band containing the marginally stable systems, and its speculative extrapolations 
into the region where - 1 < y < 0. It appears that  the band is approximately 
symmetrical about the horizontal line A = 1. We know of no reason to  expect this 
symmetry to be exact, although owing to  the invariance of these systems under the 
interchange y+l/y, A + l / A ,  the stability boundary must cut the line y = - 1 at 
points equidistant from A = 1 and with parallel tangents a t  these two points. 
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A last general inference from table 5 is that the strength of the convective 
structures resulting from the instability, as measured by their contrast, decreased as 
y was increased with h fixed, becoming zero a t  the stability boundary. 

Again a comparison can be made with previously published results for some of the 
systems listed in table 1. Whitmore (1955) reported the existence of convective 
structures for the system h = 1.02, y = 0, $1 = $2 = 0.15, and so too did Weiland 
et al. (1984) for the system A = 0.63, y = 1.0, $1 = $2 = 0.15. Both these systems 
lie within the region in figure 7 that we find t o  correspond to unstable conditions. 
On the other hand, Weiland et al. (1984) reproduce a photograph showing the 
existence of rather faint columnar structures for the system h = 0.63, y = 1.0, 

= 0.143, $2 = 0.095 (their system C in table l ) ,  which does not seem to be 
consistent with our figure 7. Leaving aside the effect of the volume fractions in their 
system being a little smaller, the point in the (h,y)-plane corresponding to their 
system C lies in the stable region of figure 7. We do not know the reason for this 
apparent discrepancy. 

4. Instability of a homogeneous bidisperse system to small disturbances 
In seeking an explanation of the formation of internal structures we begin with 

the natural inference from the observations that a statistically homogeneous 
bidisperse sedimenting system is unstable to small disturbances. This is different from 
the more familiar kind of instability in which a small disturbance to a fluid motion 
or a boundary shape grows in magnitude, for here the particles have random positions 
and the state of the system is defined only statistically. We shall consider theoretically 
the response of the homogeneous system to perturbations of the concentrations of 
the two types of particle (represented by their volume fractions $1 and $&. 

In the absence of an obvious physical mechanism of instability it seems appropriate 
to proceed initially on the simplest basis, and to begin with the approximate average 
form of the equation expressing conservation of particles of type i, viz. 

a$$ - 
at - - -V-{ $1( V+ U,)} ( i  = 1,2),  

where V is the local mean velocity of the mixture relative to the container walls and 
Ut is a mean velocity of particles of type i relative to local zero-volume-flux axes. 
Equation (4.1) is in error only inasmuch as contributions to the transport of particles 
due to fluctuations in the particle velocity are ignored. In  an approximately 
homogeneous dispersion the effect of these velocity fluctuations, which may arise from 
Brownian motion if the particles are sufficiently small (of about one micron in 
diameter or less) and from hydrodynamic interaction with neighbouring particles, is 
to  require the addition of a diffusion term 

to the right-hand side of (4.1), provided the lengthscale of the spatial variation in 
$* is large compared with the particle size. The higher-order spatial derivative in (4.2) 
ensures that the diffusion term is negligible for sufficiently slow spatial variations of 
q5r, and later we shall check that the diffusion term is indeed small for the spatial 
variations of $ j  that are found to be relevant. 

In its more familiar monodisperse form equation (4.1) is the basis of the theory 
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of vertically propagating concentration waves of small amplitude initiated by Kynch 
(1952). In  that theory it is customary to assume that the mean particle velocity 
relative to local zero-volume-flux axes is the same function of the local concentration 
as in a homogeneous dispersion, and we shall assume similarly that Ul and U2 depend 
only on the local values of 4, and q52. This assumption is evidently valid for sufficiently 
small spatial gradients of $, and $2. Later we shall need to make a quantitative 
estimate of the conditions for validity 

The mean mixture velocity V ,  which is the only quantity in (4.1) not determined 
by $, and $2 and the particle properties, in general must be found from an equation 
of motion of the mixture. However, V = 0 in the statistically homogeneous dispersion 
and V .  W$, is of second order in the perturbation quantities, so V does not enter into 
the analysis of stability of the homogeneous dispersion. The two equations represented 
by (4.1) are consequently sufficient for the determination of the perturbations in $1 
and $2. 

The linearized form of (4.1) for a small disturbance to the homogeneous dispersion 
is then 

where the superscript (0) indicates the value appropriate to the undisturbed 
dispersion. We now investigate the evolution of a disturbed state of the form 

$, = $~)+A,exp[at+ik*(x-ct)]  (i = i , 2 ) ,  (4.4) 

where a, k and care real, on the understanding that a perturbation of arbitrary initial 
form can be represented as a sum or integral of such three-dimensional Fourier 
components evolving independently. Substitution of (4.4) in (4.3) gives 

and on eliminating the amplitudes A ,  and A,  we find 

(a- ik * c+ iKll)(a- ik . c + iKZ2) = - K,, K Z l ,  (4.6) 

where we have written 

The solution of the quadratic equation for a is 

a- ik. c = -+i(Kll + KSS)  T$[(Kl, - K,,), + 4KlS K,,];, (4.8) 

from which it may be seen that the condition for an exponentially growing 
disturbance to exist, that is the condition that there is a positive root for u, is 

(4.9) (& -Kzz)' + 4K12 Kzi < 0. 

Since U, and U, and hence also c are vertical vectors we may write 

where Ui and c are signed quantities, being positive when U, and c are downward 
vertical vectors like gravity and negative when upward, and 8 is the angle made with 
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the downward vertical by the wavenumber vector k. The condition for instability 
is then 

the superscript zero now being regarded as understood. 
When this condition is satisfied 

and 

(4.10) 

(4.11) 

The difference between the phases of the sinusoidal variations of $1 and of #2 lies 
between 0 and 7-c when I < 0. 

At the limit 11.0 we have 

and 

(4.13) 

(4.14) 

There are thus two possible forms of neutral disturbance at the boundary of a domain 
of instability corresponding to the two possible signs on the right-hand side of (4.14). 
The difference between the phases of the $1 wave and of the q52 wave is 0 (correspond- 
ing to the positive sign) or R (corresponding to the negative sign) if U1/a$, is 
positive, and R or 0 if a#l U1/i3q5, is negative. When the phase difference is x the two 
types of particle are being separated from each other, whereas when it is 0 the 
two types of particle are being concentrated in the same regions of space. 

When I > 0 on the other hand, 

(4.15) 

All Fourier components now propagate without change of amplitude, and there are 
two possible wave speeds, both independent of k, corresponding to different values 
of the (real) amplitude ratio A,/A,. 

We note that in the absence of hydrodynamic coupling between the two particle 
species, i.e. when aU,/a$, and aU2/a$, are zero, (4.6) reduces to two independent 
undamped concentration waves propagating vertically with speeds a$l U1/aq5, and 

U2/aq5, as would be expected. The possibility of growing modes is connected with 
the dependence of the mean fall speed of one type of particle on the presence of the 
other. More specifically, i t  appears from (4.10) that instability is possible only if 
aUl/aq5, and aU2/a+, have opposite signs and a product of sufficiently large 
magnitude. 

We have yet to  determine whether the condition (4.10) is satisfied for bidisperse 
systems relevant in practice, but even so it is interesting, and rather surprising, to have 
established that growing waves exist in principle in a statistically homogeneous 
dispersion in which particles move under the action of gravity and viscous stresses 
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only. The possible existence of growing or decaying concentration waves in a 
bidispersion becomes obvious as soon as it is realized that a spatial variation of 
concentration of one species causes the mean velocity of the particles of the other 
species to be non-uniform. 

5. Dependence of the growth rate on wavenumber 
When the condition (4.10) is satisfied, all Fourier components of the disturbance 

are amplified and the rate of amplification is proportional to the vertical component 
of the wavenumber k. This is not realistic for very large values of k ,  and it is necessary 
now to  consider the additional process or effect that causes the expression (4.11) for 
u to be invalid at large values of k and that perhaps determines a wavenumber for 
which the growth rate has a maximum. 

As mentioned previously, our assumption that U, and U ,  depend only on the local 
values of q5, and q52 will be an accurate approximation only if the spatial gradients 
of 9, and q52 are small, that is, only if k is small. The values of U ,  and U ,  a t  a point 
in the dispersion depend in reality on the global configuration of particles, and it is 
to be expected that, as departures from statistical homogeneity are increased, so the 
departures of U ,  and U,  from the values corresponding to those for a homogeneous 
dispersion with particle concentrations equal to the local values of q5, and q52 will 
increase. For quantitative information we can appeal to a calculation made by 
Feuillebois (1984) of the mean particle velocity in a dilute monodispersion in which 
only pairwise interactions are significant and in which the concentration has a 
vertical variation of the form 

q5 = q50(l+A coskx) .  (5.1) 

This was not an exact calculation, because the distribution of particle pairs was 
assumed arbitrarily to be uniform for pair separations greater than 2a, but nevertheless 
the results should indicate the general magnitude of the effect of concentration 
variation on the mean particle velocity. 

Feuillebois found that 

U ( x )  = Uo{ 1 - 6.55$,( 1 + aA cos kx)  + O(&)}, (5.2) 

where a is a function of ka only (a being the particle radius) which varies between 
the limits a+l as ka+O, corresponding to (U-Uo) /Uo  having the ‘local’ value 
expected for the assumed pair-distribution function, viz. - 6.55 times the local 
concentration, and a+O as ka+m,  corresponding to (U-U,)/U,, being equal to 
- 6.55 times the average of the concentration over a neighbourhood of x. For ka < 1 
Feuillebois finds the asymptotic relationship 

a - 1-0.67 ka, 

which gives a correct to within 10 yo for values of ka up to about 0.65 and shows that 
the range of variation of U as a function of x when ka = 0.65 is only 0.56 of that when 
ka = 0. 

The effect of increasing the wavenumber of a sinusoidal variation of concentration 
in a monodispersion is thus to reduce the range of variation of mean particle velocity 
as a function of position, and to reduce it to zero as ka + 00. The same may be expected 
to be true of a bidispersion. This is a stabilizing influence in a bidispersion with 
sinusoidal variations of the two concentrations, because without spatial variations 
of the mean particle velocities there can be no amplification of the disturbance. The 
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linear dependence of the growth rate g on wavenumber k found in (4.11) will thus 
be modified a t  non-small values of ka (where a = +(al + a2)) when the influence of 
spatial variations of $1 and $2 on the mean particle velocities is taken into account, 
and there will evidently be a value of ka, k,a say, for which n is a maximum and 
another value, k,a say, at which v = 0. No theoretical estimates of k ,  a and k, a are 
available, but Feuillebois’s calculation for a monodispersion suggests that k ,  a < 1 
and k,  a is of order unity. 

The effect of the diffusion term (4.2) which has not been taken into account in the 
above perturbation analysis would likewise increase, and ultimately become 
dominant, as ka+ 00. The magnitude of the ratio of this neglected diffusion term to 
the retained ‘convection’ terms in (4.3) may be estimated as k2Do/kUo, where Uo is 
representative of the mean particle speeds (e.g. +(I Ull + I U21)). The representative 
diffusivity Do is the sum of the Brownian diffusivity, which is quite negligible for 
particles as large as those listed in table 1 ,  and the hydrodynamic diffusivity 
associated with fluctuations in the velocity of a particle due to changes in the 
configuration of neighbouring particles. The value of this latter contribution is not 
known with certainty, but is likely to be of order atlU,l for the i-type particles, 
provided the total particle concentration is not near maximum packing, or aU, if we 
may assume the two particle radii and mean speeds to be not greatly different. Thus 
the ratio of the neglected to the retained term is of order ka in general and the neglect 
is justified provided ka -4 1 .  

Diffusion processes normally have a stabilizing influence on small disturbances. 
However, hydrodynamically driven diffusion of sedimenting particles has some 
unusual features, and the effect on small disturbances depends on the relative 
magnitudes of the diagonal and off-diagonal elements of the diffusivity matrix, about 
which very little information is available. Whether the influence is stabilizing or 
destabilizing is not an important question for disturbances with non-horizontal 
wavenumber vectors, because if ka 4 1 the convective processes investigated in $4 
are dominant and if ka = 0(1) non-local effects of the kind described above modify 
the values of the mean particle velocities and ensure stability. But for disturbances 
with horizontal wavenumber vectors the question is of some consequence because the 
convection terms in (4.3) are then identically zero and the growth or decay of 
disturbances for which ka -4 1 is determined by hydrodynamic diffusion processes 
alone. 

It may be admitted here that for a long time we were misled by the predominantly 
vertical and cylindrical character of the structures formed in a sedimenting 
bidispersion, as reported by Weiland and his colleagues and as observed in our own 
initial experiments. This led us to infer that the dispersion is unstable only to 
disturbances with horizontal wavenumbers, and to seek an explanation for the 
instability in the effect of the diffusion term, and specifically in the effect of the 
cross-diffusivities. However, our later experiments showed that the structures that 
emerge spontaneously from a well-mixed dispersion are not vertical or column-like 
in every case and that, even when streaming columns do form, they are preceded by 
drop-like concentrations of particles and so are likely to be caused by secondary 
bulk-buoyancy effects (see for example the photographs in figures 2a-e). Guided by 
these further observations, we made a closer study of the possibility that the 
convective terms in (4.3) cause growth of small disturbances with non-horizontal 
wavenumbers and found enough evidence, to be described in $6, to persuade ourselves 
that the condition (4.10) is indeed satisfied for certain ranges of values of A ,  y ,  $1 
and g52. The question whether hydromamic diffusion causes disturbances with 
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horizontal wavenumber vectors to grow, although interesting theoretically, thus 
seems not to be relevant to the explanation of the formation of the observed 
structures and will not be pursued here. 

6. Satisfaction of the condition (4.10) for instability 
Only a limited amount of information about the dependence of the mean particle 

velocities U ,  and U ,  in a homogeneous dispersion on the four parameters $,, $,, A, 
y is available. In  this section we try to use this information to determine the sign 
of the auantitv 

for specified ranges of values of +,, $,, h and y.  Exponentially growing disturbances 
exist only if I < 0. It will be recalled that U, and U, are defined as the vertical 
components of the mean particle velocities and so may have either sign. 

We note first one or two immediate general results. As 4,+0 or $,+O we have 

which is positive definite, showing that all bidispersions are stable when either 4, or 
4, is sufficiently small. A necessary condition for instability is that the change in the 
mean velocity of particles of type i due to the addition of some particles of the other 
type should have opposite senses when i = 1 and i = 2. A special case for which this 
condition is not satisfied is h = 1, y = 1,  for which V, and U, are equal and depend 
only on 4, + #,, showing the expected stability for two identical species of particles. 

Dilute dispersions 
When y = 4, + 4, @ 1 we may write 

where U,, and U,, ( = yh2U,,) are the vertical components of the velocities of isolated 
particles of types 1 and 2. The sedimentation coefficients Sll, S,,, S,,, S,, depend on 
the hydrodynamic interactions between pairs of particles, and their values are known 
from either observation or theory for a variety of conditions. S,, and S,, both 
represent the sedimentation coefficient for a monodispersion, which is widely 
accepted on empirical grounds as having a value within about 20 % of - 5.5 for rigid 
spheres with diameters between 2 pm and 100 pm. (At small PBclet number the value 
- 6.55 calculated for a uniform pair-distribution function is well established, but for 
larger particles there is some theoretical uncertainty about the effect of possible 
departures of the pair-distribution function from uniformity in a monodispersion.) 
The coupling sedimentation coefficients S,, and S,, have recently been calculated for 
a number of values of h and y both for large and for small values of the Peclet number 
(Batchelor 1982 ; Batchelor & Wen 1982), and the results for large PBclet number - the 
condition relevant here - are set out in tables 1 and 2 and figures 6 and 7 in the second 
of these two papers; none of these results has yet been checked experimentally. 

As already mentioned, I > 0 when either 4, or 4, is sufficiently small. No 
rigorous deductions about change of the sign of I from positive to negative as 4, 



Structure formation in bidisperse sedimentation 399 

and q5, increase from zero may be made by use of the expressions (6.2), because 1 can 
change sign only when terms of different algebraic order in q5 are numerically 
comparable in magnitude. Nevertheless the expressions (6.2) indicate the trends of 
the functions Ul and U,, and allow reasonable conjectures about the circumstances 
in which I changes sign. 

Consider first the particle system with the properties 

A =  1, y = - i ,  Uzo=-U1 , ,  (6.3) 

(6.4) 
and put 

Then when q51 = q5, we have from the symmetry of the system 
Ul = Ul, 4(q51, $219 u, = u,, 4(q51> $2) = u,, 4 ( q 5 2 ,  $1). 

and consequently 

Now the numerical data for a dilute dispersion mentioned above show that 

Sll x -5.5, S12 = -2.4, 

whence we see from (6.2) that 

= 1-13.4q51+O(q5e), -(q51x) = 2.4q51+O(q5a) (6.7) 
$s=$i 

when q51 and q5, are small. 

comparison we also show 
These two linear functions of q51 are shown as broken lines in figure 8. For 

Fl/aq51)w=o for a case in which 

Fl(q51, 0) = (1-9W5, (6.8) 

which is a good fit, over the whole range of values of q51, to the observations of mean 
velocity of particles of radius 1.55 pm in a monodispersion made by Buscall et al. 
(1982). The difference between this curve and the straight line that is tangent to 
it at the origin is small until q51 exceeds about 0.05, and it seems likely that the same 
is true of Fl/i3q51 for a bidisperse system when q52 is also small. Since Fl has a very 
small value at maximum packing of the particles, the integral of Fl/a#l over the 
whole range of values of dl for given q5, is approximately zero. It is therefore very 
likely that Pl/aq5 ) is negative for some (large) values of q51. The full curves 

heuristically in conformity with these requirements. Intersection of the two curves 
seems inevitable, and according to (6.6) I is decreasing through zero at this point of 
intersection. This is the basis of our belief that the condition for instability is satisfied 
for some values of dl and 4, when A = i ,  y = - 1. 

If this intersection of the curves is accepted, there is a neutral stability point at 
a common value of q51 and q5, which appears to be roughly 0.09. The difference between 
the phases of the waves in dl and in 4, at this neutral stability point is zero according 
to  (4.13) and (4.14), because F,/aq51)dl=41 is positive and (q51 aFl/aq5,)4,=+l is 
negative at q51 = q5, = 0.09. This is an important conclusion with a bearing on the 
observed particle structures, to which we shall refer in the next section. A t  common 

in figure 8 representing +,=$ ( q514/aq51)+,=+l and -(q51tlZ(/aq52)$sT+l have been drawn 
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FIGURE 8. Functions relevant t o  the instability criterion for a bidispersion for which h = 1, y = - 1 .  
The dotted curve for Z$/i3q51)+z=o is empirical. The three dashed lines are calculated asymptotes 
for 6 1. The two continuous curves are conjectural. The growth rate of a small disturbance first 
becomes positive, as q51 and q52 are increased together from zero, at the value of at which the 
two continuous lines cross. 

values of and q52 above about 0.09, I < 0 and growing modes exist. On further 
increase of #1 and #2, Fl becomes small and I presumably decreases to a minimum 
and later increases. Without more information about the dependence of I( on q51 and 
q4z i t  is impossible to say whether the quantities Fl/aq51)9n=4, and (q51i3FJaq5z)92=91 
again have equal magnitude at  some value of q51 and &less than that for close packing 
of the particles (viz. q51 = q5z x 0.32). If there is a second neutral stability point, the 
difference between the phases of the waves in q51 and q52 is x there if 
is negative and 0 if it is positive. The wave speed of both neutral and ampf&td 
disturbances is zero when $1 = g52. 

Similar considerations apply to the particle system defined by (6.3) with unequal 
values of q51 and q52, although now we no longer have available the relations (6.5). 
In place of (6.6) we have 

F1/aq5,) - 

and in place of (6.7) 

x 1-11.0$1-2.4q52, q51-z-2.4+l, a4 

x 1-11.0q4z-2.4q517 $h2- a4 x -2.4$h2, 

aq51 342 

%52 a41 

(6.10) 
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when $,, 4, 4 1. If we use these expressions regardless of the restrictions on 4, and 
q5,, we find that I decreases through zero as 4, increases, with a fixed, through a value 
given by 

4 2  

$1 
a=--. 

2 
“ = 13.4( 1 +a) + (23.044’ 

(6.11) 

When a = 1 this recovers the value of 4, given by the intersection of the two broken 
lines in figure 8 (viz. 0.063); and when a 4 1, either 4, or 4, is less than 0.063 at 
this neutral point and the other is greater than 0.063. 

The dilute-dispersion formulae (6.2) may be used to get an indication of whether 
the dispersion is unstable in other cases. Consider for instance the particle pair given 
by h = 1, y = - 2, values which are close to those for Weiland, Fessas & Ramarao’s 
system A, listed in table 1. We have here 

S,, = -2.26, S,, = -2.45. 

The term outside the brackets in (6.1) does have the negative sign required for 
instability, and we find that the first neutral point is given roughly by 

3 - 15.94,- 24.34, = (44.34, 4,);. (6.12) 

Likewise for h = 0.5, y = -5, which approximates to the particle pair in Fessas 
When 4, = 4, this yields 4, = 0.064. 

& Weiland’s system A, we have 

S,, x -5.0, S,, x -2.2, 

and the relation specifying the first neutral point crudely is 

2.25- 13.84, - 18.84, = (55$, 4,)t. (6.13) 

When 4, = 4, this gives 4, = 0.056. 
Finally, we note from table 1 in the paper by Batchelor & Wen (1982) that when 

y > 0 the coefficients S,, and S,, are both negative for all combinations of values of 
h and y except when y 1. It appears that the term outside the brackets in (6.1) 
is always positive when y is positive and of order unity, thus precluding the possibility 
of finding instability from the dilute-dispersion formulae. However, it  may be that, 
when 4, + 4, is fairly large, the addition of more particles of either type would bring 
the dispersion closer to maximum packing and each mean particle velocity closer to 
a common intermediate value, corresponding to aU,/aq5, and a U,/a+, having opposite 
signs. Consequently the possibility of instability when y > 0 may exist at large values 
of 4, and 4,. 

The case h 4 1 

When the spheres of one species (type 2 say) are much smaller than those of the other 
species, the hydrodynamic interaction of the two species takes a simpler form. The 
physical approximations that are possible in this case have been considered previously 
in the context of dilute bidispersions (Batchelor 1982) but are equally applicable at 
other concentrations. 

The medium outside the larger spheres now behaves approximately as a continuum, 
on the scale of the large spheres, with mean density 

where $ = - 4 2  

1-41’ 
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and an effective viscosity pf($), where p is the fluid viscosity and $ is the fraction 
of the volume outside the larger spheres that is occupied by the smaller type-2 
spheres. The mean velocity of the larger type-1 spheres is thus given approximately 
by the formula for a monodispersion, and we may write 

(6.14) 

Here B(4,)  is the mobility function specifying the dependence of the settling velocity 
in a homogeneous monodispersion on the volume fraction of the particles, and 
Vlo(l - y$)/ f  is the velocity of an isolated type-1 sphere of density p1 in a fluid of 
density po + $(pz -po)  and viscosity pf. Empirical information about the positive 
functions I?(#,) and f($) is available. 

The smaller type-2 spheres on the other hand are dispersed with volume fraction 
$ in a pure fluid of density po and viscosity p, and the main effect of the presence 
of the larger type-1 spheres is to generate a mean velocity - U, +J(l in the 
mixture of pure fluid and small type-2 spheres. Thus the mean velocity of the type-2 
spheres is approximately 

V, = V,o W )  -- 41 Vl (6.15) 

On substituting these approximate expression (6.14) and (6.15) into (6.1) we find, 

1-41' 
and V,, = yA2Ul,. 

after some working, that 

where S($,) = dB/d$, and C($)  = (1 - y$)/f($).  Only the squared term in (6.16) 
survives in the limit h+O, showing that I > 0 for a certain small range of values of 
A. Moreover, the second (unsquared) term in (6.16) is non-negative when ycl($) < 0. 
This condition is satisfied when 0 6 y$ < 1,  suggesting that the expression (6.16) is 
positive for a larger range of (small) values of A when y$ lies within this range. 

Thus the dispersion is stable when the spheres of one species are much smaller than 
those of the other species, for any value of the density ratio y and for any values of 
the volume fractions 41 and $z. The condition on h for stability is likely to be less 
restrictive for positive values of y of order unity. 

7. The relation between the theory and observations 
It remains now to consider the extent to which the theoretical results obtained in 

$$4, 5, 6 are in accord with the observations described in §$2, 3, 
The main accomplishment of the theory is of course that it provides an explanation 

for the observed occurrence of finite disturbances to a statistically homogeneous 
bidispersion under some, but not all, conditions. The explanation involves only the 
movement of the particles through fluid due to gravity and hydrodynamic interaction 
of the particles, the same two processes that alone are believed to be at work in the 
dispersions observed in the laboratory. However, there is more than one way in which 
these two processes may be represented by equations involving averaged quantities, 
and a decisive test of the theory requires a quantitative comparison with the 
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observations. This is beset by difficulties, both in the calculations and in 
the experiments, and we have not been able to achieve precision or completeness in 
the comparison. 

We compare the theory and observations under two headings, first the conditions 
for instability and second the properties of the structures that arise spontaneously 
in a homogeneous bidispersion. 

The conditions for instability 
The stability of the bidispersion to small disturbances depends on the values of the 
four parameters A,  y ,  #,, q5,. There is presumably a relation between these parameters 
representing a boundary in the four-dimensional space which separates a region of 
instability from a region in which disturbances propagate as waves without change 
of form or amplitude. Almost all the observational evidence concerning the critical 
conditions is summarized by figures 6 and 7, in which the stability boundary is 
determined approximately, as a band rather than as a line. Many more such figures 
will need to be compiled before the complete shape of the stability boundary becomes 
clear. Nevertheless, the existence of a stability boundary is well established by the 
observations and some features of its shape can be identified. 

According to the theory, the relation specifying critical conditions is I = 0, where 
I is defined in (6.1), and the bidispersion is unstable on the side of the boundary on 
which I < 0. We saw that I approaches a positive limit as either q 5 p O  or q5,-+0, 
indicating stability near the #, and 4, axes in figure 6, in accordance with the data. 
The quantity I involves the mean particle velocities U, and U,, itnd at  present we are 
able to calculate U, and U, as functions of A, y ,  dl, q5, accurately only for small values 
of and #,. The trend of I as a function of 4, and 4, for a dilute bidispersion suggests 
that I decreases to zero as 4, or q5, increases, for certain values of A and y. This 
suggestion is clearest for the case A = 1, y = - 1, for which I becomes zero when q5, 
and 4, are increased together to a value roughly equal to 0.09 (the critical condition 
I = 0 being attained when the two conjectural unbroken lines in figure 8 cross). The 
point #, = 0.09, q5z = 0.09 will be seen to lie within the band indicating critical 
conditions in figure 6. The dependence of I on q5, and 4, for the same dilute dispersion 
also suggests that I becomes zero, as #1 say is increased with q5z fixed, at a value of 
q5, which is larger for smaller values of $,, again in accordance with the data in 
figure 6. A generally similar shape of the stability boundary near the origin of the 
(#1, #,)-plane is suggested by the dilute-dispersion formulae for other values of A and 
y provided y c 0, and this is consistent with the limited number of observations made 
on such systems. There is however no suggestion from the dilute-dispersion formulae 
that I becomes negative as #, and q5, are increased from zero when y > 0 ; if I does 
become negative in this case, it  will be at larger values of and 4, than in cases 
for which y c 0. Figure 7 does in fact show the occurrence of instability when 
dl = 4, = 0.15 at some positive values of y. 

We saw from a consideration of a heuristic model of a bidispersion for which A 4 1 
(or A 9 1) that I > 0 in such cases regardless of the values of y ,  q5, and q5,. This is 
in accordance with the position of the stability boundary in figure 7 for systems for 
which #, = q5, = 0.15. Figure 7 shows that the range of values of A for which there 
is instability is zero when y = 1 ,  and is approximately 5 < A < 3 when y = 0 and a 
little larger when y = - 1, a trend which is consistent with the dependence of (6.16) 
on y noted at the end of $6. Bidispersions in which one type of particle is much smaller 
than the other occur often in practice, so i t  is useful to know that, according to the 
theory, they are always stable. The observed stability of a mixture of any two sizes 
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of particles made of the same material when $1 = $2 = 0.15 is also noteworthy from 
a practical viewpoint, and it would be useful to know if the same is true a t  other 
concentrations. 

In  summary, the rather limited quantitative predictions of the theory are all 
consistent with the observations of the critical conditions for instability. 

The properties of the emergent structures 

Some comparison of theory and observation is also possible under this heading if we 
may assume that the observed structures are a finite-amplitude development from 
the normal-mode small disturbances for which the growth rates are close to  their 
maximum. With this assumption the size, shape, degree of particle separation, and 
time of formation of the observed structures should reflect the calculated properties 
of the normal modes that become dominant by the usual process of selective 
amplification. However, a simple correspondence of the observed structures and the 
dominant normal-mode disturbance cannot be expected, for a number of reasons. 

There is firstly the difficulty that the instability lies in the spatial distribution of 
averaged properties of the dispersion, in particular the particle concentration, which 
has not been observed directly. We have observed discrete particles, whose positions 
and motions in one realization reflect the mean properties of a disturbance only in 
a ragged manner. Secondly, this instability is not related to the existence of 
boundaries, and small disturbances in different parts of the dispersion may be 
amplified independently, giving rise to a confusing concentration distribution 
without long-range order. Thirdly, the growth of a disturbance to  the concentration 
distribution generates bulk density variations and vertical convection currents which 
soon become stronger than the vertical velocities in the homogeneous dispersion (for 
instance, the fall speed of a sphere of the mixture of radius 20 times the radius of 
monodisperse particles becomes comparable with the mean speed of the particles 
relative to local zero-volume-flux axes when the excess volume fraction of the 
particles in the sphere is only 0.0025 of the overall volume fraction), and these currents 
deform the growing disturbances. A fourth reason for expecting the form of the 
emergent structures to  be irregular is the deduction from the theory that all Fourier 
components of a disturbance with equal vertical components of the wavenumber 
vector have the same growth rate and that although the growth rate is a maximum, 
for given wavenumber magnitude, when the wavenumber vector is vertical i t  is a 
weakly defined maximum. All these difficulties make it a good deal easier to  decide 
whether structures have formed than to say what they look like. It is not surprising 
that we do not see sinusoidal variations of particle concentration. 

We have given in separate columns of table 4 our rough estimates of the optical 
contrast, the general shape (as one of four types), the horizontal width d ,  and the 
time of evolution 7 (taken as being the time for the onset of visible bulk convective 
motions) of the structures observed in a large number of unstable systems for which 
A =  1 a n d y = - l .  

Our observations of the degree of optical contrast in the structures formed in 
systems for which A = I ,  y = - 1, may be summarized by the statement that the 
contrast is poor for the lowest value of $1+$2 a t  which a system is unstable and 
becomes stronger as $1+ q52 is increased (see figure 6).  Optical contrast is a measure 
of the separation of the two particle species, and the instability evidently causes a 
degree of particle separation which is stronger when $1+$2 is larger. The bulk 
convective motions that are generated by gravity acting on spatial variations of 
concentration do not change the particle concentration in a material element of the 
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mixture, so that the separation of the two particle species must occur in the regime 
of exponentially growing small disturbances. 

+ $2 is in fact similar to 
what the linear instability theory predicts. It will be recalled from $4 that there are 
two possible forms of neutral disturbance at the boundary of a domain of instability, 
the difference between the phases of the sinusoidal variations of the concentrations 
of the two particle species being 0 in one case and A in the other. We also showed 
in $6 from dilute-dispersion calculations that, for the symmetrical system given by 
A = 1 ,  y = - 1, $1 = $2, the quantity I is positive when $, = $2 = 0 and decreases 
through zero as dl and $z increase through a value of about 0.09, in accordance with 
the observations shown in figure 6, and that the phase difference is zero at the point 
where I = 0 and increases from zero as and #2 are increased from 0.09. Thus the 
theory predicts minimum separation of the two particle species and minimum optjcal 
contrast in the emergent structures a t  $1 = $2 = 0.09 - and, from continuity, on the 
whole of the stability boundary shown in figure 6 - and increasingly strong contrast 
as the point representing the system in the ($l,#z)-plane 
stability boundary. 

The observed dependence of the contrast in the structure 
y for systems for which dl = $2 = 0.15 is recorded in table 5 
contrast is generally poor close to the stability boundary, a 
the system point moves away from the stability boundary in 
in figure 7. This is what would be expected from the theory if, 
geometrical grounds, the stability boundaries shown in figu 
sections of a connected surface in the space of A, y ,  d1, $2 on which I = 0 and the 
difference between the phases of the sinusoidal variations in the two particle 
concentrations is zero. 

The shapes of the structures observed to form in unstable systems for which A = 1 ,  
y = - 1 are given in the column of table 4 headed ‘type’, and, as noted in $3 and 
figure 6 ,  there is a tendency for systems with smaller values of the total volume 
fraction $1 + d2 to yield vertical streams or columns and systems with larger values 
to yield blobs. We cannot account for this tendency. The linear instability theory 
tells us only that Fourier components of an initial infinitesimal disturbance are 
amplified at a rate which depends on their wavenumber vector, whereas the observed 
structures depend also on the interaction of Fourier components and on the bulk 
convection that develops when the disturbance amplitude is only modest. In some 
way these latter processes evidently generate convective structures with characteristic 
shapes. 

The values of the horizontal width of the structures at 20 s after cessation of mixing 
range from d = 21a to d = 67a (see table 4), and tend to be larger for larger values 
of d1+d2. It was noted in $3  that the blob-like structures with good particle 
separation that tend to form at the larger values of dl + $2 increase in average size 
by a process of coalescence associated with the bulk convective motions, and that 
the rate of coalescence increases with d1 + $2. On the other hand the horizontal width 
of the column-like structures did not change much during this interval of 20 s. If we 
notionally set aside the observations of d in all those cases in table 4 where the 
structure ‘type ’ is B or BC and the ‘contrast ’ is G ,  on the grounds that these values 
of d are influenced by bulk convection, we find that the values of d are much more 
uniform and with one exception lie in the range 21a to 31a. 

We may now consider the relation between this characteristic lengthscale of the 
observed structures and the lengthscale predicted by the linear instability theory. 

The observed dependence of the particle separation on 
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The lengthscale of the visible finite-amplitude disturbance is probably a measure in 
part of the wavelength of the sinusoidal small disturbances that grow most rapidly 
and in part of the distance normal to the wavenumber vector over which an amplified 
small disturbance is coherent. However, bulk convection sets in at quite small values 
of the amplitude of a growing disturbance and is likely to limit coherence to distances 
comparable with the wavelength, in which event the wavelength of the growing 
disturbance determines the lengthscale of the emergent structures. Thus we may 
tentatively identify the observed lengthscale with the wavelength of the sinusoidal 
disturbance with maximum growth rate, which was denoted by 2x/k, in 95. If we 
take d = 26a, this gives k, a = 0.24. The theory is able to say about k, a only that the 
dependence of U, and U, on non-local values of the particle concentrations has a 
stabilizing influence which becomes stronger as the wavenumber increases and that 
k,a is likely to be less than unity. 

The observed values of the time of evolution 7 of the convective structures given 
in table 4 range from 20a,/l U,, I to 74a,/l U,, I, and there appears to be a tendency for 
7 to be larger for larger common values of 9, and 4,. Now the time 7 may be regarded 
as a sum of a few e-folding times of the fastest-growing sinusoidal disturbance and 
the time required for bulk buoyancy forces to develop visible collective convection 
of particles following the creation of spatial variations of the particle concentration. 
Rough estimates of this latter response time show that it is usually quite small. The 
non-dimensional e-folding time of the dominant disturbance is given by (4.11) as 

and inspection of the curves in figure 8 suggests that ( - I ) i / l  U,, 1 is roughly 0.2 when 
#, and #, are equal and lie in the range 0.1-0.2. If we now take from the experiments 
the estimate k,a z 0.24, we obtain 40 for the non-dimensional e-folding time of the 
disturbance which is to be identified with 7 )  U,,l/a. The number 40 is of the same order 
of magnitude as the values of 71 U,, l /a observed for those systems listed in table 4 that 
have roughly equal values of and 4,. It is impossible to say more without more 
information about the numerical values of U, and U, as functions of 4, and 4,. 

We may conclude that there is a small measure of agreement, and no conflict, 
between the observed properties of the emergent structures and our linear instability 
theory. 

We thank Professor A. Acrivos of Stanford University for drawing our attention 
several years ago to the published observations of structure formation in 
bidispersions and Professor R. H. Weiland of Clarkson College for kindly showing us 
some of his additional unpublished data on structure formation. 
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